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Fibrosis and Cancer: Do Myofibroblasts
Come Also From Epithelial Cells Via EMT?

Derek C. Radisky,1* Paraic A. Kenny,2 and Mina J. Bissell2**
1Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
2Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California

Abstract Myofibroblasts produce and modify the extracellular matrix (ECM), secrete angiogenic and pro-
inflammatory factors, and stimulate epithelial cell proliferation and invasion. Myofibroblasts are normally induced
transiently during wound healing, but inappropriate induction of myofibroblasts causes organ fibrosis, which greatly
enhances the risk of subsequent cancer development. As myofibroblasts are also found in the reactive tumor stroma, the
processes involved in their development and activation are an area of active investigation. Emerging evidence suggests
that a major source of fibrosis- and tumor-associated myofibroblasts is through transdifferentiation from non-malignant
epithelial or epithelial-derived carcinoma cells through epithelial-mesenchymal transition (EMT). This review will focus
on the role of EMT in fibrosis, considered in the context of recent studies showing that exposure of epithelial cells tomatrix
metalloproteinases (MMPs) can lead to increased levels of cellular reactive oxygen species (ROS) that stimulate
transdifferentiation to myofibroblast-like cells. As deregulated MMP expression and increased cellular ROS are
characteristic of both fibrosis andmalignancy, these studies suggest that increasedMMPexpressionmay stimulate fibrosis,
tumorigenesis, and tumor progression by inducing a specialized EMT in which epithelial cells transdifferentiate into
activated myofibroblasts. This connection provides a new perspective on the development of the fibrosis and tumor
microenvironments. J. Cell. Biochem. 101: 830–839, 2007. � 2007 Wiley-Liss, Inc.
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Following identification of tumors near
scar tissue [Friedrich, 1939], fibrosis has been
investigated for its role in tumor formation and
development. Investigations of themechanisms
governing fibrosis development and the rela-
tionship between fibrosis and tumor develop-
ment are focusing on myofibroblasts, as these

cells aremost responsible for thedevelopment of
fibrosis and are also abundant in the reactive
tumor stroma [Ronnov-Jessen et al., 1995;
Faouzi et al., 1999; Powell et al., 1999; Phan,
2002; Desmouliere et al., 2003; Petersen et al.,
2003]. Originally characterized for their
role in wound healing [Gabbiani et al., 1971],
myofibroblasts have been found to play critical
roles in an array of pathological processes
[Powell et al., 1999; Desmouliere et al., 2005].
Recent findings that myofibroblasts can be
derived from epithelial cells [Lee and Joo,
1999; Oldfield et al., 2001; Petersen et al.,
2003; Li et al., 2004; Nightingale et al., 2004;
Willis et al., 2005; Kim et al., 2006; Selman and
Pardo, 2006] have provided a new impetus for
investigating the processes involved in myofi-
broblast formation in the fibrotic andmalignant
context. These discoveries have paralleled an
increasing awareness of the role of EMT in the
control of tissue function inmany organsystems
[Gudjonsson et al., 2005].

Matrix metalloproteinases (MMPs) are so
named because of their ability to cleave almost
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all elements of the extracellular matrix (ECM),
but MMPs can also break down molecules that
mediate cell–cell and cell–ECM interactions,
and can cleave and activate growth factors
and growth factor receptors [Lochter et al.,
1997a;Lochter et al., 1998;Overall andKleifeld,
2006]. Many of the MMPs were initially cloned
as cancer-specific genes [McCawley and
Matrisian, 2000], and a causal relationship
betweenupregulation ofMMPsandprogression
to malignancy has long been suspected
[CoussensandWerb, 2002]. Anumber of studies
have suggested a causal relationship between
MMP expression and lung fibrosis [reviewed in
PardoandSelman, 2006], and transgenicmouse
experiments have shown that MMPs stimulate
mammary fibrosis as well [Thomasset et al.,
1998; Sternlicht et al., 1999; Ha et al., 2001].
In this review, we focus on the role of MMP-
induced fibrosis andmalignancy in the lung and
breast, although it is clear that MMPs and
fibrosis are involved in the development of
malignancy in other organs as well [Bissell,
2001].

MMPs, FIBROSIS, AND CANCER

Epithelial injuries can be repaired through
formation of granulation tissue, a provisional
structure generated by ECM deposition, fibro-
blast proliferation, angiogenesis, and immune
cell influx [reviewed in Thannickal et al., 2004].
Myofibroblasts are the key cells involved in the
creation of granulation tissue, producing
MMPs and other ECM-degrading enzymes that
degrade the damaged tissue, as well as synthe-
sizing collagen I, fibronectin, hyaluronic acid,
and other components of the wound provisional
ECM. An additional function of myofibroblasts
is ECM contraction: through the formation of
stress fibers containing smooth muscle actin,
myofibroblasts can exert substantial remodel-
ing force on the granulation tissue [Tomasek
et al., 2002; Hinz and Gabbiani, 2003; Hinz,
2006]. Normally, completion of injury repair is
followed by degradation of the provisional ECM
and apoptosis of the myofibroblasts; however,
sustained myofibroblast activation stimulates
dysfunctional repair mechanisms, leading to
accumulation of fibrotic ECM that is rich in
collagens that coalesce into fibrous bundles
resistant to degradation [Thannickal et al.,
2004]. The fibrotic ECM disrupts cell polarity
and stimulates cell proliferation, creating a

context for cancer formation and develop-
ment—the myofibroblast-induced inflamma-
tion and angiogenesis facilitating tumor
growth and progression [Sieweke et al., 1990;
Bissell, 2001; Desmouliere et al., 2004]. It is
unsurprising, then, that the presence of fibrotic
lesions significantly increases the risk of cancer
in many tissues, including lung [Artinian and
Kvale, 2004; Daniels and Jett, 2005], liver
[Bissell, 2001; Bataller and Brenner, 2005],
and breast [Boyd et al., 2002; Boyd et al., 2005].

In addition to contributing to the earlier
stages of transformation, myofibroblast-in-
duced fibrosis and contraction of the interstitial
space are also believed to be key contributors to
the higher interstitial fluid pressure frequently
found in solid tumors [Heldin et al., 2004].
Unlike normal tissues, in which there is a
slightly negative transcapillary pressure
gradient facilitating the outward flow of solutes
from the blood stream, the high interstitial
pressure in tumors forms a substantial impedi-
ment to this flow. This has implications for the
delivery of anti-cancer drugs to the tumor site,
and suggests that approaches which target
myofibroblasts or reduce fibrosismight enhance
the accessibility of the tumor to the drugs.

Lung fibrosis has been extensively studied
and classified [Thannickal et al., 2004]. Some
lung fibrosis syndromes are caused by exposure
to toxic or infectious agents, or by traumatic
injuries, and these can generally be resolved by
removal of the inducing agent and/or anti-
inflammatory treatments. However, persistent
idiopathic pulmonary fibrosis (IPF) can occur
in the absence of any obvious external agent,
and in these cases, clinical treatments have
proven less successful. IPF is also distinct
from other lung fibrotic syndromes in that it is
typified by extensive collagen deposition, loss
of basement membrane, and epithelial and
fibroblast proliferation, but very little inflam-
mation [Thannickal et al., 2004]. Incidence of
IPF in the US alone has been estimated as
high as 50,000 affected individuals, with med-
ian survival time from diagnosis of less than
3 years; nearly half of those affected by IPFmay
develop lung cancer [Daniels and Jett, 2005].
Fibroblastic foci containing myofibroblasts are
often localized at the leading edge of lung
fibrosis, and incidence of fibroblastic foci is an
indicator of poor prognosis and decreased
survival. The most common animal models of
lung fibrosis use treatment with bleomycin,
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paraquat/hyperoxia, asbestos, or silica; how-
ever, these inflammation-driven models may
differ significantly from clinical IPF, which
appears to be primarily an epithelial/mesench-
ymal disorder [Pardo and Selman, 2006].

While breast fibrosis is a common occurrence
following anti-cancer radiation therapy [Choi
et al., 2004], breast fibrosis as a spontaneously
occurring clinical phenomenon is much less
characterized than lung fibrosis. However, a
number of studies have suggested a link
between the common phenomenon of high
density regions on mammograms and breast
cancer risk [Boyd et al., 2005]; histological
analyses of radiographically opaque areas of
the breast have revealed increased fibrous
tissue, collagen deposition, and fibroblast accu-
mulation [Wellings and Wolfe, 1978; Buchanan
et al., 1981; Bright et al., 1988; Urbanski et al.,
1988;Bartowet al., 1990;Boyd et al., 1992;Boyd
et al., 2000], characteristic markers of fibrosis.
Myofibroblasts are also associated with non-
invasive breast hyperplasias and in the stroma
surrounding breast carcinoma [Lagace et al.,
1985; Sappino et al., 1988].

It is generally accepted that upregulation of
MMPs likely contributes to lung fibrosis in
humans [Pardo and Selman, 2006], but dissect-
ing the specific mechanisms by which MMPs
contribute to development and progression of
fibrosis has been challenging. A number of
experimental models have been used to eva-
luate the role ofMMPs in the sequence of events
following treatment with fibrosis-inducing
agents [Elkington and Friedland, 2006]. Tran-
scriptional profiling analysis has identified
matrilysin (MMP-7) as significantly upregu-
lated in bleomycin-induced lung fibrosis
[Zuo et al., 2002], and a suite of MMPs are
upregulated in asbestos-induced lung fibrosis
[Tan et al., 2006]. Induction of fibrosis is
enhanced in mice lacking expression of tissue
inhibitors of metalloproteinases (TIMPs) [Kim
et al., 2005], and reduced in mice treated with
pharmacologic inhibitors of MMPs [Corbel
et al., 2001; Lim et al., 2006; Tan et al., 2006]
or in mice genetically deficient for MMPs [Zuo
et al., 2002; Lim et al., 2006].

We have found that expression of MMP-3 in
the mammary glands and lungs of transgenic
mice is sufficient to induce fibrosis even in the
absence of any additional challenge (Fig. 1 and
Thomasset et al., [1998]), and similar results
have been observed in mice expressing MT1-

MMP [Ha et al., 2001]. While these results
suggest MMPs as therapeutic targets for treat-
ment offibrosis, non-specific inhibition ofMMPs
is likely to be problematic: MMPs are involved
in many critical physiological processes,
activity of MMPs is likely to be necessary to
remove the excess collagen depositions present
in fibrosis and MMPs are necessary for
lung alveolarization and mammary branching
[Parks and Shapiro, 2001; Fata et al., 2004], so
inhibition ofMMPsmay actually prevent tissue
repair and block recovery. Accordingly, identi-
fying and targeting the processes stimulated by
MMPs may be required in combination.

EMT AS A SOURCE OF MYOFIBROBLASTS
IN FIBROSIS AND CANCER

The origin of myofibroblasts has been an
active topic of debate almost since their identi-
fication. Their morphological similarities to
tissue fibroblasts have led to the assumption
that myofibroblasts are derived from these
cells; indeed, in culture, fibroblasts can be
induced to express myofibroblast markers and
to adopt morphological properties of myofibro-
blasts following treatment with specific cyto-
kines, of which transforming growth factor-b
(TGFb) has been the most studied [Ronnov-
Jessen et al., 1995; Tomasek et al., 2002; Willis
et al., 2006]. However, more recent results are
suggesting that while myofibroblasts may
sometimes develop from existing interstitial
fibroblasts, this viewpoint may be too narrow.
Animal studies using transplanted bone mar-
row precursors have shown that cells with
myofibroblast characteristics can be derived
from myeloid precursor cells [Brittan et al.,
2002; Direkze et al., 2004; Hashimoto et al.,
2004; Brittan et al., 2005; Mori et al., 2005;
Yamaguchi et al., 2005; Russo et al., 2006],
suggesting a potential role for bone marrow-
derived stem/progenitor cells in tissue fibrosis.

Emerging evidence, however, suggests that
epithelial cells are also an important source of
myofibroblasts in fibrosis and cancer [Selman
and Pardo, 2006]. Epithelial-myofibroblast
transition can be induced in cultured epithelial
cells from a number of organ systems [Lee and
Joo, 1999; Oldfield et al., 2001; Petersen et al.,
2003; Li et al., 2004; Nightingale et al., 2004;
Willis et al., 2005; Kim et al., 2006]. Analysis of
tissue samples from patients with IPF re-
vealed many cells with shared epithelial and
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myofibroblast markers [Willis et al., 2005], and
genetic tests showed that mesenchymal cells
withmyofibroblast characteristics isolated from
human breast cancer biopsies were found to
be derived from the epithelial tumor cells
[Petersen et al., 2003]. These findings are
further supported by the demonstration that
stromal cells of breast tumors can share genetic
lesions in common with the tumor epithelium
[Moinfar et al., 2000]. Recently, transgenicmice
were created in which lung epithelial cells were
permanently tagged for expression of b-galacto-
sidase; induction of pulmonary fibrosis in these
mice by TGFb revealed that the increases in
myofibroblasts were largely due to transdiffer-
entiation from epithelial cells [Kim et al., 2006].
The accumulating evidence of epithelial-myofi-
broblast transdifferentiation has profound
implications for our understanding of the
processes involved in fibrosis and cancer devel-
opment. An important goal now is to define the
extracellular mediators that induce epithelial-
myofibroblast transdifferentiation, and the sig-
naling pathways involved in this process.

Transdifferentiation of myofibroblasts from
epithelial cells is a specialized version of
epithelial-mesenchymal transition (EMT), a
process in which epithelial cells can take
on the characteristics of mesenchymal cells
[Radisky, 2005]. EMT was originally identified
in development: in gastrulation, EMT enables
the embryonic epithelium to give rise to the
mesoderm; in delamination of the neural crest,
EMT produces a population of highly mobile
cells that migrate to and are incorporated into
many different tissues [Nieto, 2001; Shook and
Keller, 2003]. More recently, EMT regulators
identified in developmental studies are being
found to be involved in key steps of tumor
development in vivo and in culture [Yang et al.,
2004;Moody et al., 2005; Radisky et al., 2005]. It
should be noted that the role of EMT in tumor
invasion and metastasis is currently a topic of
active debate [Tarin et al., 2005; Thompson
et al., 2005]. Although this may be because
investigations have primarily focused on
tumor EMT as a mechanism for stimulating
epithelial cell invasion or metastasis through a

Fig. 1. Induction of fibrosis in breast and lung of MMP-3-transgenic mice. A: Accumulation of collagen
around ducts of 15-day pregnant MMP-3-transgenic mice, assessed by Gomori’s trichrome staining for total
collagen (blue) (scale bar¼50 mm). B: Alveolar hyperplasia and collagen deposition characteristic of early
fibrosis in newborn CCSP-rtTA/tet-MMP-3 transgenic mice induced to express MMP-3 for 7d in utero,
assessed byMasson’s trichrome stain (scale bar¼ 200mm). A: Adapted from Thomasset et al., 1998. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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transient mesenchymal state, consideration
that a significant function of tumor EMT is to
create stromal myofibroblasts that may not be
intrinsically malignant but which significantly
stimulate progression of the remaining epithe-
lial tumor cells could redefine these contro-
versies. The identification of a mechanism by
which MMPs, long associated with fibrosis
induction and tumor progression, also stimu-
late EMT suggests a connection between these
processes.

MATRIX METALLOPROTEINASE INDUCTION
OF EPITHELIAL-MESENCHYMAL TRANSITION

The non-tumorigenic mouse mammary
epithelial cell line SCp2 has been used to study
processes involved in the induction of EMT
[Desprez et al., 1993; Lochter et al., 1997a,b].
SCp2 cells contain mutated p53, but are
phenotypically normal: they undergo alveolus-
like development and induce milk protein
synthesis when cultured in laminin-rich three-
dimensional gels supplemented with lactogenic
hormones [Desprez et al., 1993; Lochter et al.,
1997b]. Exposure of these cells to MMP-3
results in loss of intact E-cadherin, increased
motility and invasiveness, downmodulation
of epithelial markers, and upregulation of
mesenchymal markers [Lochter et al., 1997a,b;
Radisky et al., 2005]. SCp2 cells exposed to
MMP-3 also develop anchorage independence,
as demonstrated by growth in soft agarose
[Lochter et al., 1998], and grow into tumors
when injected into the cleared mammary fat
pads of immunocompromised mice [Sternlicht
et al., 1999].

Treatment ofmousemammary epithelial cells
with MMP-3 causes a range of phenotypic
alterations associated with EMT, including
increased motility and invasiveness [Lochter
et al., 1997a,b], alterations of cytoskeletal com-
position, including downmodulation of epithelial
cytokeratins and induction of mesenchymal
vimentin (Fig. 2A), and altered expression of
a number of EMT-related genes, including,
significantly, smooth muscle actin, collagen A1,
and fibronectin (Fig. 2B), characteristic markers
of myofibroblasts. Elucidation of the cellular
pathways connecting MMP-3 treatment with
induction of EMT provided further insight into
the role of this process in MMP-induced fibrosis
and tumorigenesis. We found that the stimula-

tion of EMT by MMP-3 was due to elevated
cellular reactive oxygen species (ROS) caused by
increased levels of Rac1b [Radisky et al., 2005].
Cells treated with MMP-3 showed increased
Rac1b (Fig. 3A), an activated splice variant of
Rac1 thathas been found inbreast and colorectal
tumors [Jordan et al., 1999; Schnelzer et al.,
2000;Matosetal.,2003;Fiegenetal.,2004;Singh
et al., 2004]. MMP-3-induced Rac1b stimulated
elevated production of ROS, as assessedwith the
redox-sensitive dye dichlorodihydrofluoresceine
diacetate (DCFDA) (Fig. 3B). The elevated
cellular ROS in cells treated with MMP-3 were
caused by mitochondrial activation [Radisky
et al., 2005], as assessed by precipitation of
nitrobluetetrazolium (Fig. 3C) and cytoplasmic

Fig. 2. Properties of MMP-3-induced EMT. A: MMP-3-treated
SCp2 cells, stained for cytokeratins (red), vimentin (green), and
DNA (blue) (scale bar¼50 mm). B: Marker transcript levels in
cells treated with MMP-3 for 4 days; P< 0.01 for all altered
expression levels. Adapted from Radisky et al., 2005. [Color
figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]
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localization of JC-1 (Fig. 3D). Elevation of ROS
by treatment with H2O2 was also sufficient to
induceEMT-related cell scattering and invasive-
ness (Fig. 3E,F), and MMP-3/Rac1b-induced
ROS were found to be specifically required for
induction of themesenchymal vimentin (Fig. 3G)
as well as other myofibroblast genes [Radisky
et al., 2005].
The role of MMP-3 as an inducer of fibrosis is

seen clearly in the WAP-MMP-3 transgenic
mouse [Thomasset et al., 1998]. Normally,
MMP-3 is produced primarily by mammary
stromal cells, with highest levels during the
post-lactational developmental stage, a time of
maximal ECM remodeling and regression of
glandular structure [Talhouk et al., 1992;Witty
et al., 1995; Lund et al., 1996]. Expression of the
MMP-3 transgene in mammary epithelial cells
stimulated increased expression of endogenous
MMP-3 in the tumor stroma and development
of fibrosis, associated with collagen deposition,

increased angiogenesis, and inflammatory
influx; these stromal alterations were coupled
with increased proliferation and branching
morphogenesis of ductal epithelial cells and
apoptosis of secretory alveolar cells [Sympson
et al., 1994; Witty et al., 1995; Alexander et al.,
1996; Thomasset et al., 1998; Sternlicht
et al., 1999; Sternlicht et al., 2000]. Similar
effects were also seen in the MMTV-MT1-MMP
transgenic mouse [Ha et al., 2001]. Analysis
by comparative genomic hybridization of the
tumors that developed in MMP-3 transgenic
mice revealed significant chromosomal amplifi-
cations and deletions [Sternlicht et al., 1999],
demonstrating that exposure toMMP-3 and the
MMP-3-induced fibroticmicroenvironment also
caused genomic instability in epithelial cells.
Thus, long-term induction ofMMP-3 can lead to
self-sustaining alterations in the microenviron-
ment that are sufficient to cause development of
tumors and progression to full malignancy.

Fig. 3. MMP-3-induced ROS activate EMT. A: SCp2 cells
treatedwithMMP-3 stimulate increased production of Rac1b, as
assessed by Rac1 activity assay and Western blot with Rac1b-
specific antibody. B: Exposure to MMP-3 activates redox-
sensitive fluorescent dye DCFDA in Rac1/Rac1b-dependent
fashion. C: MMP-3 treatment induces mitochondrial production
of superoxide as shown by precipitation of nitrobluetetrazolium
in cells treatedwithMMP-3 (b) as compared to untreated cells (a).
D: MMP-3 treatment induces mitochondrial depolarization as
shown by loss of punctuate red staining of the J-aggregate and

increased diffuse green staining of the monomeric form in the
MMP-3-treated cells (b) as compared to untreated (a). E–F:
Exposure to H2O2 induces cell scattering (E) and invasiveness
through Matrigel (F), as compared with MMP-3-treated cells.
Scale bars for C–D, 10 mm; for E, 50 mm. G: MMP-3-induced
upregulation of mesenchymal vimentin expression is inhibited
byNAC and is reproduced by exposure toH2O2 or by expression
of Rac1b. Adapted fromRadisky et al., 2005. [Color figure can be
viewed in the online issue, which is available at www.
interscience.wiley.com.]
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EPITHELIAL-MYOFIBROBLAST
TRANSDIFFERENTIATION AS A

THERAPEUTIC TARGET

Recognition of epithelial transdifferentiation
as a possible major source of myofibroblasts in
fibrosis provides an essential new target for
therapeutic strategies. Even with aggressive
anti-inflammatory treatment regimens, IPF
remains an irreversible and progressive disease
[Walter et al., 2006], and many patients with
IPF develop lung cancer. Breast fibrosis,
though not intrinsically fatal, presents a
substantial risk factor for subsequent tumor
development. Experiments using cultured
cells and transgenic animals showed that the
MMP-3-induced EMT and stimulation of tumor
growth was initially reversible upon MMP
withdrawal, but eventually became permanent
[Lochter et al., 1997a; Sternlicht et al., 1999];
these results suggest that elevations in myofi-
broblast numbers, a transient phenomenon
under normal physiological conditions, also
may be reversible at early stages of fibrosis
and tumor genesis. We found that cellular
ROS were essential for MMP-induced EMT
[Radisky et al., 2005], and ROS have been
implicated asmediators of EMT in othermodels
as well [Mori et al., 2004; Rhyu et al.,
2005]. Human lung fibrosis is associated with
oxidative stress, with evidence of oxidant/anti-
oxidant imbalance in alveolar air spaces
[Rahman et al., 1999], and inhibitors of ROS
have shown promise in clinical trials target-
ing fibrosis [Campana et al., 2004; Delanian
et al., 2005; Demedts et al., 2005]. It may be
that combining specific inhibitors of MMPs
and agents that inhibit ROS may be even
more efficacious. Further investigation of the
processes governing epithelial-myofibroblast
transdifferentiation will likely suggest addi-
tional approaches.
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